A view of the distribution of dark matter in our universe, based on the Millennium Simulation. The simulation is based on our current ideas about the universe's origin and evolution. It included ten billion particles, and consumed 343,000 cpu-hours (Image: Virgo Consortium)
For the first time, a team of astronomers has "observed" a filament of dark matter connecting two neighboring galaxy clusters. Dark matter is a type of matter that interacts only very weakly with light and itself. Its very nature is mysterious. Mapping the dark matter filament's gravity was the key to the breakthrough. The result is considered a crucial first step by scientists. It provides the first direct evidence that the universe is filled by a lacework of dark matter filaments, upon which the visible matter in the universe is distributed like small beads.
Jörg Dietrich of the physics department at the University of Michigan, together with his co-workers, examined gravitational lensing in the Abell 222 and 223 galaxy clusters. These clusters each have about 150 galaxies, are about 2.4 Gly (1 Gly being a gigalight-year, or 1 billion light-years) distant from Earth, and are separated by about 0.4 Gly. Earlier work by Dietrich's team using the 8.2 meter Subaru telescope on Mauna Kea, and the XMM-Newton x-ray space telescope discovered that these two clusters appear to be connected by a bridge of hot gas, as shown below.
Composite astrograph of the Abell 222 and 223 galaxy clusters as seen in visible light and by x-rays - the filament of dark matter between the two is suggested by the hot x-ray emitting gas (shown in dark red) gathered along the filament (Image: ESA/ XMM-Newton/ EPIC/ ESO (J. Dietrich)/ SRON (N. Werner)/ MPE (A. Finoguenov)
They suggested that the hot gas might be concentrated along a filament of dark matter, as is found in simulations of cosmological structures, but a strong case for that interpretation could not then be made.
Dietrich and his team decided to do a careful examination of the region of the two Abell clusters. They studied weak lensing effects and solved for the mass density function of the clusters and the region between them. Then by examining the mass density function of the region they were able to test their hypothesis.
A filament of dark matter has been directly detected between the galaxy clusters Abell 222 and Abell 223. The blue shading and yellow contour lines represent the density of matter Photo: (Jörg Dietrich, U-M Department of Physics)
"We found the dark matter filaments. For the first time, we can see them," said Dietrich. "It looks like there's a bridge that shows that there is additional mass beyond what the clusters contain. The clusters alone cannot explain this additional mass." At least 90 percent of the filament's mass is dark matter.
We are still left with the problem of demonstrating that dark matter filaments appear between most neighboring galaxy clusters, and the puzzle of what dark matter actually is. The discovery of a dark matter filament, however, is a huge step forward for cosmology.
This groundbreaking observation is consistent with modern cosmological models, but the story actually starts some 80 years ago.